
JAVA : Part#1

Learning ObjectiveLearning Objective
• To understand the data types

• To understand variables

• To understand arraysTo understand arrays

JOE PASCAL XAVIER JAVA: Part#1 SXC

Data Types
Java is a strongly typed language
The Simple Types
Java defines eight simple (or elemental) types of data: byte, short, int,

Java is a strongly typed language

Data type Description

Java defines eight simple (or elemental) types of data: byte, short, int,
long, char, float, double and boolean. These can be put in four groups:

Integers This group includes byte, short, int, and long, which are for whole valued signed numbers.

Floating-point This group includes float and double, which represent numbers with fractional precision.
numbers

Characters This group includes char, which represents symbols in a character set, like letters and
numbers.

Boolean This group includes boolean, which is a special type for representing true/false values.Boolean This group includes boolean, which is a special type for representing true/false values.

JOE PASCAL XAVIER JAVA : Part#1 SXC

Data Types

Integers: Java defines four integer types: byte, short, int, and long. All of these are
signed, positive and negative values.

byte: The smallest integer type is byte. This is a signed 8-bit type that has a range from –
128 to 127. Byte variables are declared by use of the byte keyword. For example, the
ollowing declares two byte variables called b and c:

byte b, c;

short: short is a signed 16-bit type. It has a range from –32,768 to 32,767. Here are some
examples of short variable declarations:

short s;short s;
short t;

int: The most commonly used integer type is int. It is a signed 32-bit type that has a range
rom –2,147,483,648 to 2,147,483,647. rom –2,147,483,648 to 2,147,483,647.

int x, y;

long: long is a signed 64-bit type and is useful for those occasions where an int type is not
large enough to hold the desired value.

JOE PASCAL XAVIER JAVA : Part#1 SXC

large enough to hold the desired value.
long total;

Data Types

Floating-Point Types: Floating-point numbers, also known as real
numbers, are used when evaluating expressions
that require fractional precision. There are twothat require fractional precision. There are two
kinds of floating-point types, float and double,
which represent single and double-precision
numbers, respectivelynumbers, respectively

float: The type float specifies a single-precision value that uses 32 bits of
storage. Here are some example float variable declarations:storage. Here are some example float variable declarations:

float hightemp, lowtemp;

double: Double precision, as denoted by the double keyword, uses 64 bits to
store a value. Here are some example double variable declarations:

double pi, radius;

JOE PASCAL XAVIER JAVA : Part#1 SXC

Data Types

Characters: In Java, the data type used to store characters is char. Java
uses Unicode to represent characters. In Java, char is a 16-uses Unicode to represent characters. In Java, char is a 16-
bit type. This is how you declare a character variable:

char ch1, ch2;

Booleans: Java has a simple type, called boolean, for logical values. It
can have only one of two possible values, true or false. This is
the type returned by all relational operators, such as the type returned by all relational operators, such as
a < b. boolean is also the type required by the conditional
expressions that govern the control statements such as if and
for.for.

boolean b;

JOE PASCAL XAVIER JAVA : Part#1 SXC

Variables

VARIABLE
A variable is a named memory location that can be assigned a value. It is a
placeholder. You can store a number like 5.95 into a variable. After you’veplaceholder. You can store a number like 5.95 into a variable. After you’ve
placed a number in the variable, you can change your mind and put a different
number, like 30.95, into the variable.

Declaring a VariableDeclaring a Variable
In Java, all variables must be declared before they can be used. The basic form
of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the name of a class or interface. The
identifier is the name of the variable. You can initialize the variable byidentifier is the name of the variable. You can initialize the variable by
specifying an equal sign and a value. To declare more than one variable of the
specified type, use a comma-separated list.

JOE PASCAL XAVIER JAVA : Part#1 SXC

Variables

Declaring a variable:
double amount

JOE PASCAL XAVIER JAVA : Part#1 SXC

Arrays
Arrays
An array is a group of like-typed variables that are referred to by a
common name. Arrays of any type can be created and may have one or
more dimensions. A specific element in an array is accessed by its index. more dimensions. A specific element in an array is accessed by its index.
Arrays offer a convenient means of grouping related information.

One-Dimensional ArraysOne-Dimensional Arrays
The general form of a one dimensional array declaration is

type varName[];

Here, type declares the base type of the array. The base type determines
the data type of each element that comprises the array. Thus, the base
type for the array determines what type of data the array will hold. For type for the array determines what type of data the array will hold. For
example, the following declares an array named monthDays with the
type “array of int”:

int monthDays[];

JOE PASCAL XAVIER JAVA : Part#1 SXC

int monthDays[];

Arrays
Although this declaration establishes the fact that monthDays is an array variable, no
array actually exists. In fact, the value of monthDays is set to null, which represents an
array with no value. To link monthDays with an actual, physical array of integers, we
must allocate one using new and assign it to monthDays. new is a special operator.must allocate one using new and assign it to monthDays. new is a special operator.

The general form of new as it applies to one-dimensional arrays appears as follows:
arrayVar = new type[size];arrayVar = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of
elements in the array, and arrayVar is the array variable that is linked to the array. That
is, to use new to allocate an array, you must specify the type and number of elements to is, to use new to allocate an array, you must specify the type and number of elements to
allocate.

The elements in the array allocated by new will automatically be initialized to zero. The elements in the array allocated by new will automatically be initialized to zero.
This example allocates a 12-element array of integers and links them to monthDays.

month_days = new int[12];

JOE PASCAL XAVIER JAVA : Part#1 SXC

Arrays
Once we have allocated an array, we can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of monthDays.

month_days[1] = 28;

The next line displays the value stored at index 3.The next line displays the value stored at index 3.
System.out.println(month_days[3]);

Arrays can be initialized when they are declared. An array initializer is a list of
comma-separated expressions surrounded by curly braces. The commas separate thecomma-separated expressions surrounded by curly braces. The commas separate the
values of the array elements. The array will automatically be created large enough to
hold the number of elements we specify in the array initializer. There is no need to use
new. For example, to store the number of days in each month, the following linenew. For example, to store the number of days in each month, the following line
creates an initialized array of integers:

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

JOE PASCAL XAVIER JAVA : Part#1 SXC

Arrays
Here is one more example that uses a one-dimensional array. It finds the average of a
set of numbers.

// Average an array of values.// Average an array of values.
class Average {
public static void main(String args[]) {

double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int i;
for(i=0; i<5; i++)

result = result + nums[i];result = result + nums[i];

System.out.println("Average is " + result / 5);
}}

}

JOE PASCAL XAVIER JAVA : Part#1 SXC

Arrays

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays. To declare a
multidimensional array variable, specify each additional index using another set ofmultidimensional array variable, specify each additional index using another set of
square brackets. For example, the following declares a two-dimensional array variable
called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is
implemented as an array of arrays of int.

When we allocate memory for a multidimensional array, we need only specify the
memory for the first (leftmost) dimension. We can allocate the remaining dimensions
separately. For example, this following code allocates memory for the first dimension
of twoD when it is declared. It allocates the second dimension manually.of twoD when it is declared. It allocates the second dimension manually.

int twoD[][] = new int[4][];
twoD[0] = new int[5];
twoD[1] = new int[5];

JOE PASCAL XAVIER JAVA : Part#1 SXC

twoD[1] = new int[5];
twoD[2] = new int[5];
twoD[3] = new int[5];

Arrays

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:

type[] varName;type[] varName;

Here, the square brackets follow the type specifier, and not the name of the array
variable. For example, the following two declarations are equivalent:variable. For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:
char twod1[][] = new char[3][4];
char[][] twod2 = new char[3][4];char[][] twod2 = new char[3][4];

JOE PASCAL XAVIER JAVA : Part#1 SXC

JAVA : Part#2

Learning ObjectiveLearning Objective

• To understand arithmetic and relational operators

• To understand the selection statements in JAVA • To understand the selection statements in JAVA

JOE PASCAL XAVIER JAVA : Part#2 SXC

Operators
Arithmetic operators
Arithmetic operators are used in mathematical expressions in the same way that
they are used in algebra. The following table lists the arithmetic operators:

Operator Result Remarks

+ Addition

- Subtraction The unary form of minus operator negates its single operand

* Multiplication

/ Division When applied to integer, the result will not have fractional component

% Modulus Returns the remainder of a division operation. Can be applied to floating point types as well.

++ Increment Increases its operand by one. (e.g.) a++ ;  a = a + 1;++ Increment Increases its operand by one. (e.g.) a++ ;  a = a + 1;

-- Decrement Decreases its operand by one. (e.g.) a-- ;  a = a - 1;

+= Addition
Assignment

Combines an arithmetic operation with an assignment. Any statement of the form

var = var op expression;
-= Subtraction

var = var op expression;

can be rewritten as

var op= expression;

For example

-= Subtraction
Assignment

*= Multiplication
Assignment

/= Division
Assignment

JOE PASCAL XAVIER JAVA : Part#2 SXC

a = a + 4;

can be rewritten as a+=4;

Assignment
%= Modulus

Assignment

Operators
Relational operators
The relational operators determine the relationship that one operand has to the
other. They determine equality and ordering. The outcome of these operations is a
boolean value. Only integer, floating-point and character operands may beboolean value. Only integer, floating-point and character operands may be
compared to see which is greater or lesser than the other.

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or >= Greater than or
equal to

<= Less than or
equal to

JOE PASCAL XAVIER JAVA : Part#2 SXC

Operators

The Assignment Operator
The assignment operator is the single equal sign, =. It has this general form:

var = expression;var = expression;

Here, the type of var must be compatible with the type of expression. It also allows
to create a chain of assignments. For example, consider this fragment:to create a chain of assignments. For example, consider this fragment:

int x, y, z;
x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement.

JOE PASCAL XAVIER JAVA : Part#2 SXC

Operators
The ? Operator
It is a ternary (three-way) operator that can replace certain types of if-then-else
statements. The ? operator has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value.Here, expression1 can be any expression that evaluates to a boolean value.
If expression1 is true, then expression2 is evaluated; otherwise, expression3 is
evaluated. Both expression2 and expression3 are required to return the same type,
which can’t be void.

Here is an example of the way that the ? is employed:
ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to
the left of the question mark. If denom equals zero, then the expression between
the questionmark and the colon is evaluated and used as the value of the entire
?expression. If denom does not equal zero, then the expression after the colon is

JOE PASCAL XAVIER JAVA : Part#2 SXC

?expression. If denom does not equal zero, then the expression after the colon is
evaluated and used for the value of the entire ? expression. The result produced by
the ? operator is then assigned to ratio.

Control Statements
Control statements:
Control statements makes the flow of execution to advance and branch based on
changes to the state of a program.

Java’s program control statements can be put into the following categories:

•Selection•Selection

•Iteration

•Jump.•Jump.

JOE PASCAL XAVIER JAVA : Part#2 SXC

Control Statements (Selection)
Selection statements:
Selection statements allow the program to choose different paths of execution
based upon the outcome of an expression or the state of a variable

Java supports two selection statements: if and switch.

if
It can be used to route program execution through two different paths. Here is the It can be used to route program execution through two different paths. Here is the
general form of the if statement:

if (condition)
statement1;statement1;

else
statement2;

The if works like this: If the condition is true, then statement1 is executed.The if works like this: If the condition is true, then statement1 is executed.
Otherwise, statement2 (if it exists) is executed. In no case will both statements be
executed.
Each statement may be a single statement or a compound statement enclosed in

JOE PASCAL XAVIER JAVA : Part#2 SXC

Each statement may be a single statement or a compound statement enclosed in
curly braces (that is, a block). The condition is any expression that returns a
boolean value. The else clause is optional.

Control Statements (Selection)
For example, consider the following:

int a, b;
// ...
if(a < b) if(a < b)

a = 0;
else

b = 0;b = 0;

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no
case they are both set to zero
Only one statement can appear directly after the if or the else. To include more Only one statement can appear directly after the if or the else. To include more
statements, create a block, as in this fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {

ProcessData();
bytesAvailable -= n;

} else

JOE PASCAL XAVIER JAVA : Part#2 SXC

} else
waitForMoreData();

Control Statements (Selection)
if-else-if Ladder
The general form of the if else if ladder is

if(condition)if(condition)
statement;

else if(condition)
statement;

else if(condition)else if(condition)
statement;

...
elseelse

statement;

The if statements are executed from the top down. As soon as one of the
conditions controlling the if is true, the statement associated with that if is conditions controlling the if is true, the statement associated with that if is
executed, and the rest of the ladder is bypassed. If none of the conditions is true,
then the final else statement will be executed.

JOE PASCAL XAVIER JAVA : Part#2 SXC

Control Statements (Selection)
Here is a program that uses an if-else-if ladder to determine which season a
particular month is in.

class IfElse {
public static void main(String args[]) {public static void main(String args[]) {
int month = 4; // April
String season;
if(month == 12 || month == 1 || month == 2)if(month == 12 || month == 1 || month == 2)

season = "Winter";
else if(month == 3 || month == 4 || month == 5)

season = "Spring";
else if(month == 6 || month == 7 || month == 8)else if(month == 6 || month == 7 || month == 8)

season = "Summer";
else if(month == 9 || month == 10 || month == 11)

season = "Autumn";
else

season = "Bogus Month";
System.out.println("April is in the " + season + ".");
}

JOE PASCAL XAVIER JAVA : Part#2 SXC

}
}

Control Statements (Selection)
switch
The switch statement is Java’s multiway branch statement. Often, it is a better
alternative than a large series of if-else-if statements.alternative than a large series of if-else-if statements.
The general form of a switch statement:

switch (expression) {
case value1:

// statement sequence// statement sequence
break;
case value2:

// statement sequence// statement sequence
break;
...
case valueN:

// statement sequence// statement sequence
break;
default:

// default statement sequence

JOE PASCAL XAVIER JAVA : Part#2 SXC

}

Control Statements (Selection)
The expression must be of type byte, short, int, or char.
Each of the values specified in the case statements must be of a type
compatible with the expression.
Each case value must be a unique literal (that is, it must be a constant, not a Each case value must be a unique literal (that is, it must be a constant, not a
variable).
Duplicate case values are not allowed.

The switch statement works like this: The switch statement works like this:
•The value of the expression is compared with each of the literal values in the
case statements.
•If a match is found, the code sequence following that case statement is •If a match is found, the code sequence following that case statement is
executed.
•If none of the constants matches the value of the expression, then the default
statement is executed. The default statement is optional.
•If no case matches and no default is present, then no further action is taken.•If no case matches and no default is present, then no further action is taken.
•The break statement is used inside the switch to terminate a statement
sequence.
•When a break statement is encountered, execution branches to the first line

JOE PASCAL XAVIER JAVA : Part#2 SXC

•When a break statement is encountered, execution branches to the first line
of code that follows the entire switch statement.

Control Statements (Selection)
// A simple example of the switch.// A simple example of the switch.
class SampleSwitch {

public static void main(String args[]) {
int i=3;
switch(i) {switch(i) {

case 0:
System.out.println(“ZERO.");

break;break;
case 1:

System.out.println(“ONE.");
break;
case 2:case 2:

System.out.println(“TWO");
break;
case 3:case 3:

System.out.println(“THREE");
break;
default:

System.out.println(“NOT IN THE RANGE (0-3)");

JOE PASCAL XAVIER JAVA : Part#2 SXC

System.out.println(“NOT IN THE RANGE (0-3)");
}

} }

